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Abstract. Using results of a recent calculation of the Λ(1520) in the nuclear medium, which show that the
medium width is about five times the free width, we study the A-dependence of the Λ(1520) production
cross-section in the reactions γ A → K+Λ(1520)A′ and p A → p K+Λ(1520)A′. We find a sizable A-
dependence in the ratio of the nuclear cross-sections for heavy nuclei with respect to a light one due to the
large value of the Λ(1520) width in the medium, showing that devoted experiments, easily within reach in
present facilities, can provide good information on that magnitude by measuring the cross-sections studied
here.

PACS. 21.80.+a Hypernuclei – 21.65.+f Nuclear matter

1 Introduction

The renormalization of particle properties in nuclei is a
topic that captures permanent attention. Devoted many-
body calculations are done in order to evaluate these prop-
erties and parallely there are experimental searches to test
these theoretical predictions, while other times it goes the
other way around, with first observation of drastic changes
in the nuclear medium. One of the simplest cases from the
experimental point of view is the renormalization of the
∆(1232)-resonance which can be seen in numerous reac-
tions, but perhaps best in the total photonuclear cross-
section [1]. With this experiment one could test theoreti-
cal predictions made in [2] for the ∆ self-energy and the
calculations of the photonuclear cross-section were done
in [3]. One might guess then that other resonances could
be tested so easily by means of total photoproduction, but
the ∆ is maybe an exceptional case where the total cross-
section is absolutely dominated by ∆ excitation in its
range of energies. This method would obviously not work
to test resonances with strangeness where other particles
with strangeness will have to be detected in coincidence,
which will most probably be distorted in the nucleus blur-
ring the signals for genuine changes of the resonance in
the nucleus. Other times the production cross-section will
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be a very small fraction of the total cross-section and pose
different but equally difficult problems. Yet, the determi-
nation of these properties bears much information on the
dynamics of the hadron interaction and the efforts to find
out these properties are fully justified.

One of the interesting cases of medium renormalization
is that of the φ-meson where theories predict an increase of
the width in nuclear matter of the order of a factor five to
ten [4–6]. Yet, the experimental observation of the change
in the width in φ photonuclear production is impractical if
one looks for a broadening of the mass distribution of the
φ decay products (KK̄) for slow φ’s, as guessed from [7]
and further elaborated in [8].

One step forward in this direction was given in the ex-
periment [9] where the A-dependence of the cross-section
was studied and from there sizable changes of the φ width
in the nuclear medium were determined. Stimulated by
this experiment a calculation was done in ref. [10] by us-
ing the theoretical values of this magnitude found in [4–6]
which indeed lead to a marked A-dependence, although
discrepancies of the theory and experiment remain that
require further thoughts. The success of the method led
to calculations of the A-dependence in the proton-induced
φ production in nuclei, showing theoretically that the
method is well suited to determine changes of the φ width
in the medium [11]. Successively, an experimental proposal
to carry out this experiment was approved in the COSY
facility at Juelich [12].
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One of the other resonances recently found theoreti-
cally with a spectacular change of the width in the medium
is the Λ(1520). This resonance could qualify as a dy-
namically generated resonance from the collaboration of
the πΣ∗(1385), K̄N and πΣ channels [13–15] and these
channels get largely renormalized in the nucleus [16]. One
of them is easily visualized: the coupling of Λ(1520) to
πΣ∗(1385) is quite large, but the width in vacuum into
this channel is extremely small since there is only phase
space for the decay through the width of the Σ∗(1385).
However, in the nucleus the pion can become a ph and
automatically there is plenty of phase space for the de-
cay. This source alone leads to a width in the medium as
large as the free width. The renormalization of the other
channels also leads to large corrections and finally the to-
tal width at normal nuclear-matter density turns out to
be as big as five times the free width. Such a spectacular
change should be clearly observable and the purpose of the
present work is to present a method of analysis based on
two reactions, exploiting the A-dependence of the cross-
section. The two reactions are the photonuclear excita-
tion and the proton-induced production of the Λ(1520).
As we shall see, in both reactions one predicts a strong
A-dependence which is amenable to experimental obser-
vation in present experimental facilities.

2 The Λ(1520) in the nuclear medium

In the description of the Λ(1520) properties in the nu-
clear medium we closely follow the formalism developed
in ref. [16]. Here, we briefly summarize the main results of
that study.

In the nuclear medium the Λ(1520) gets renormal-
ized through the conventional d-wave decay channels in-
cluding Λ(1520) → K̄N and Λ(1520) → πΣ which ac-
count for practically all of the Λ(1520) free width Γfree '
15.6MeV [17]. In addition in ref. [16], as a novel ele-
ment, the s-wave decay Λ(1520) → πΣ∗(1385) has been
considered, which is forbidden in the free space for the
nominal masses of the Λ(1520) and Σ∗(1385) but opens
in the nuclear medium because of an additional phase
space available for the decay products. The existence of
the Λ(1520) → πΣ∗(1385) mode and also the strength of
the transition [15,18] is a prediction of the chiral unitary
models [14,19], where the πΣ∗(1385) channel is the most
important one in the dynamic coupled-channel formation
of the Λ(1520) state.

The model diagrams describing the renormalization of
the Λ(1520) in the nuclear medium are shown in fig. 1.
As one can see, the in-medium propagation of pions in
the loops is affected by the excitation of the p-hole and
∆(1232)-hole states and in the antikaon K̄ case by the ex-
citation of the all relevant hyperon-hole states. The inter-
mediate baryons (hyperons) in the loops are also dressed
with respect to their own decay channels properly renor-
malized in the nuclear medium. The latter includes the
dressing by means of the phenomenological optical poten-
tials which account for the nuclear binding corrections,
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Fig. 1. Renormalization of the Λ(1520) in the nuclear medium
in the s-wave πΣ∗(1385) and d-wave K̄N and πΣ channels.

Fig. 2. The s-wave self-energy graph of the K̄ in the nuclear
medium.

Pauli blocking for the nucleons and short-range corre-
lations in the p-wave transitions induced by the strong
repulsive forces at short inter-baryon distances of the
Landau-Migdal type [20].

The model of ref. [16] takes into account the p-wave
interaction of the K̄ in the K̄N loops only. The correc-
tions to the K̄ self-energy due to the in-medium s-wave
interaction of the K̄ (see fig. 2) can be estimated using
the formula [21]

Πs-wave
K̄

= −2ωK̄

(

40MeV + i50MeV
)

×
ρ

ρ0
, (1)

where ωK̄ is the energy of the K̄ and ρ0 = 0.17 fm−3

is the normal nuclear matter density. The s-wave self-
energy is introduced in the calculation substituting m2

K̄

by m2
K̄
+Πs-wave

K̄
in the K̄ propagator. The renormaliza-

tion of the Λ(1520) width in the d-wave K̄N channel which
now includes both, the p-wave and s-wave self-energies of
antikaons is shown in fig. 3 (left panel). Here the solid
curve is the free width in this channel. The dashed curve
is the result of the p-wave interaction of the K̄ (from
ref. [16]). The dot-dashed curve corresponds to the sum
of the p- and s-wave interactions of the K̄ in the nuclear
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Fig. 3. Left panel: renormalization of the width of the Λ(1520) at rest P = (P0, 0) in the K̄N channel at normal nuclear-matter
density. The solid curve is the free width in this channel, fig. 1(g). The dashed curve is the result of the p-wave interaction of
the K̄ (from ref. [16]), figs. 1(h) and (i). The dot-dashed curve corresponds to the sum of the p- and s-wave interactions of the
K̄ in the nuclear medium. Right panel: the Λ(1520) width in the nuclear medium as a function of the density ρ/ρ0, where ρ0

is the normal nuclear-matter density. The error bar is explained in the text. In addition to the result obtained in ref. [16] the
s-wave interaction of the K̄ has been taken into account, producing an increase of ΓΛ(1520) of ' 14% at ρ = ρ0.

medium. From the s-wave interaction we get ∆Γ s-wave
Λ∗ =

−2ImΣs-wave
Λ∗ ' 11MeV, at normal nuclear matter den-

sity, in addition to the result already reported in ref. [16].
In fig. 3 (right panel) we show the model prediction for

the width ΓΛ∗ of the Λ(1520) at rest and at the nominal
pole position as a function of the nuclear-matter density
ρ/ρ0. The error bars reflect the theoretical uncertainties
due to the choice of the momentum cut-off in the d-wave
loops, with a cut-off constrained by studies of refs. [15,
18] (see other details in refs. [16,22]). The model predicts
a significant change of the width of the Λ(1520) in the
nuclear medium which gets increased by a factor ∼ 5 at
normal nuclear-matter densities.

In the following we address the impact of the in-
medium width of the Λ(1520) in the γ- and p-induced
production of this hyperon from nuclei. We shall also con-
sider other relevant nuclear effects in the production cross-
section which will be implemented here by using standard
many-body techniques, successfully applied and tested in
the past in many works [3,23] to study the interaction of
different particles with nuclei. A considerable simplifica-
tion will be achieved by assuming a local Fermi sea at each
point in the nucleus. The latter provides a very simple but
accurate way to account for the Fermi motion of the initial
nucleon and for the Pauli blocking of the final ones.

3 Nuclear effects in the Λ(1520)
photoproduction

We start with the photo-induced production of the
Λ(1520) in nuclei. The elementary reaction will be

γ + p→ K+ + Λ(1520), (2)

where we consider the photoproduction of K+Λ(1520)
pairs from protons only. There are several theoretical
works on this reaction [24–27], but the models, as well
as the couplings of the Λ(1520) to different channels, are
rather different in all these works. However, for the pur-
pose of the present work, the detailed dynamics of the
γp → K+Λ(1520) reaction is not needed since we shall
evaluate ratios of cross-sections between different nuclei.

We evaluate the nuclear distortion factor due to
the Λ(1520) absorption using the eikonal approximation,
where the propagation of the Λ(1520) in its way out of the
nucleus can be accounted for by means of the exponential
factor describing the probability of loss of flux per unit
length.

We proceed as follows: let Σ(pΛ∗ , ρ(r)) be the Λ(1520)
self-energy in the nuclear medium, calculated using the
model of ref. [16], as a function of its three-momentum,
pΛ∗ , and the nuclear density, ρ(r). We have for the width

Γ = −2ImΣ; Γ ≡
dP

dt
, (3)

where P is the probability of Λ(1520) interaction in
the nucleus, including Λ(1520) quasielastic collisions and
Λ(1520) absorption. We shall not consider the part of the
ImΣ due to the quasielastic collisions since, even if the
nucleus gets excited, the Λ(1520) will still be there to be
observed. Thus, only the absorption of the Λ(1520) is re-
flected in the loss of Λ(1520) events in the nuclear pro-
duction. This part of the Λ(1520) self-energy is the one
calculated in [16]. Hence, we have for the probability of
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loss of flux per unit length

dP

dl
=

dP

v dt
=

dP

|pΛ∗ |

ωΛ∗
dt

= −2ωΛ∗
ImΣ

|pΛ∗ |
, (4)

with ωΛ∗ =
√

p2
Λ∗ +M2

Λ∗ and the corresponding survival
probability is given by

exp

[

−

∫ ∞

0

dl
(−1)

|pΛ∗ |
2ωΛ∗ImΣ(|pΛ∗ |, ρ(r

′))

]

, (5)

where r ′ = r+ l pΛ∗

|pΛ∗ |
with r being the Λ(1520) production

point inside the nucleus. The study of the A-dependence
of the total nuclear cross-section due to the Λ(1520) ab-
sorption, eq. (5), is the main aim of this work, since it
reflects the modification of the Λ(1520) hyperon width in
nuclear matter.

We proceed further by assuming a local Fermi sea. In
this case the nuclear cross-section which takes into account
the Λ(1520) absorption is given by

σγA =
MΛ∗

8π2pγ

∫

d3r

∫ kF (r) d3pN
(2π)3

1

|P|

×

∫ ωmax
Λ∗

MΛ∗

dωΛ∗

∫ 2π

0

dϕΛ∗
∑

si

∑

sf

|T |2Θ(1−A2)

×Θ(pγ + E(pN )− ωΛ∗(pΛ∗)−mK)

× exp

[

−

∫ ∞

0

dl
(−1)

|pΛ∗ |
2ωΛ∗ImΣ(|pΛ∗ |, ρ(r

′))

]

, (6)

where the proton density is defined as 2
∫

d3
pN

(2π)3Θ(kF (r)−

|pN |) = ρp(r), with pN the momentum of protons in the
Fermi sea, kF the Fermi momentum at the local point,
Θ the step function and ωmax

Λ∗ = pγ +MN − mK . Also,
in eq. (6), pγ is the photon momentum in the laboratory
frame (the nucleus is at rest), P = pγ + pN is the total
γN three-momentum and A is defined as follows:

A ≡
1

2|P||pΛ∗ |

×
{

P2+p2
Λ∗+m

2
K−

[

pγ+E(pN )−ωΛ∗(pΛ∗)
]2
}

. (7)

The binding of the initial nucleon is accounted for by
Vs(r) = −εF (r) = −k

2
F (r)/(2MN ), and in all places where

we have E(pN ) we put E(pN ) =
√

p2
N +M2

N + Vs(r).
For ImΣ in the distortion factor we should take all

sources contributing to the self-energy which do not go
into the final detection channel. Detection of the Λ(1520)
is done mostly by reconstruction through its K−p decay
channel, or K̄0n channel in present set-ups at ELSA. The
K−p decay channel should be removed because one can
detect it. However, the partial decay width into the K−p
is ' 3.5MeV only, out of which, some K− might still be
absorbed or have quasielastic collisions. This is only a very
small fraction leading to an error of 5%. In view of this,
and neglecting the small fraction of the Λ(1520) → K−p
decay followed by K− absorption in secondary steps, we

consider for ImΣ in eq. (5) only the Λ(1520) in-medium
self-energy calculated in ref. [16] subtracting the free one.
Note also that there is no coherent production here since
there is always conversion of an initial proton into a
Λ(1520), i.e. the nucleus does not remain in its ground
state.

We shall evaluate the ratio between the nuclear cross-
sections in heavy nuclei and a light one, for instance 12C,
since in this way, many other nuclear effects not related
to the distortion of the Λ(1520) cancel in the ratio, as was
shown in ref. [11]. In the ratio of the cross-sections we shall
eliminate |T |2 which should cancel if the latter is not much
energy dependent. In this respect, let us consider that the
K+Λ(1520) production will be measured by looking at
dσγA/dMK−p and selecting the contribution of the peak
of the K−p invariant mass around the Λ(1520). This gives
a very restricted phase space where the cancellation of |T |2

is justified.
In eq. (6) we have considered the K+Λ(1520) produc-

tion on the protons of the target. In principle, we could
also haveK+Λ(1520) production in two-step processes like
γn → K0Λ(1520) followed by K0p → K+n. The chances
for this two-step reaction are not large, but in any case,
one of the good things to make ratios of cross-sections
on heavy nuclei to light nuclei is that the effect of these
two-step processes is highly reduced in the ratio [11].

4 Nuclear effects in the p-induced Λ(1520)
production

In a similar way to what was obtained in ref. [11] for the
φ-meson production in the p-induced reaction, we expect
the A-dependence of the pA→ A′K+Λ(1520) reaction in
nuclei to provide also a conclusive test of the modification
of the Λ(1520) width in the nuclear medium. Within the
local Fermi sea approach the pA nuclear cross-section can
be evaluated, as a first approximation, as

σpA(pLab) = 4

∫

d3r

∫

d3k

(2π)3
Θ(kF − |k|)σm(pLab,k, r),

(8)
where pLab is the momentum of the incident proton
and σm the elementary pp → pK+Λ(1520), pn →
nK+Λ(1520) average cross-section in the nuclear medium,
which will be defined later in eq. (10).

One of the main differences of the p-induced reaction
with respect to the photoproduction case previously dis-
cussed is the fact that the incident proton is strongly dis-
torted in its way to the reaction point. This effect can
be properly considered by adding in eq. (8) the following
eikonal factor:

exp

[

−

∫ z

−∞

σpN (pLab)ρ(
√

b2 + z′2)dz′
]

, (9)

where z and b are the position in the beam axis and the
impact parameter, respectively, of the production point r

of eq. (8). In eq. (9) σpN is the total pp and pn averaged
experimental cross-section, taken from [17], for a given
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Fig. 4. The nuclear cross-section for the γ-induced production of the Λ(1520). Left panel: σγA/Z for different nuclei normalized
to the same fraction of 12C for pγ = 2, 2.5 and 3GeV. Right panel: the same for pγ = 2GeV and multiplying the in-medium
width of the Λ(1520) by different factors.

incident proton momentum. Equation (9) represents the
probability for the proton to reach the reaction point with-
out having a collision with the nucleons, since σpNρ is the
probability of proton collisions per unit length. There is of
course the possibility of having the reaction through two-
step collisions, but this was discussed in [11] and found to
cancel to a great extent in the ratios of cross-sections of
heavy to medium nuclei.

The elementary cross-section in the nuclear medium
for the p(pLab) + N(k) → N(p1) + K+(p2) + Λ∗(pΛ∗)
reaction is

σm(pLab,k, r) ∼
1

|pLab|

×

∫

dΩΛ∗

∫

d|pΛ∗ |p
2
Λ∗

∫

d|p1|
|p1|

|P|

1

E(p1)ωΛ∗(p∗
Λ)

×
∑

si

∑

sf

|T |2Θ(1−B2)Θ(|p1| − kF (r))Θ(|p2| − kF (r))

×Θ(E(pLab) + E(k)− E(p1)− ωΛ∗(pΛ∗)−mK) (10)

up to some global constants irrelevant in the final results
since they will cancel when we will evaluate the ratio of
different nuclei to 12C. In eq. (10) P = pLab+k−pΛ∗ , and
B provides the cosinus of the angle between P and p1,

B ≡
1

2|P||p1|

{

m2
K + P2 + p2

1 − [E(pLab)

+E(k)− E(p1)− ωΛ∗(pΛ∗)]
2
}

,

with E(q) =
√

M2
N + q 2, ωΛ∗(pΛ∗) =

√

M2
Λ∗ + p2

Λ∗ .
In eq. (10) the azimuthal angle of p1 with respect to P

has already been integrated, assuming that |T |2 does not
depend on this angle.

Gathering all these results, the final expression for the
Λ∗ production cross-section in nuclei reads, up to a global

constant factor,

σA(pLab) ∼
1

|pLab|

×

∫

d2b

∫ ∞

−∞

dz exp

{

−

∫ z

−∞

σpN (pLab)ρ(
√

b2+z′2)dz′
}

×

∫

d3k

∫

d|p1|

∫

dΩΛ∗

∫

d|pΛ∗ |
p2
Λ∗ |p1|

|P|E(p1)ωΛ∗(pΛ∗)

×
∑

si

∑

sf

|T |2Θ(1−B2)

×Θ(kF − |k|)Θ(|p1| − kF (r))Θ(|p2| − kF (r))

×Θ(E(pLab) + E(k)− E(p1)− ωΛ∗(pΛ∗)−mK)

× exp

{

−

∫ ∞

0

dl
(−1)

|pΛ∗ |
2ωΛ∗ ImΣ(|pΛ∗ |, ρ(r

′))

}

. (11)

5 Results and discussion

We performed calculations for the following nuclei: 12
6 C,

16
8 O, 24

12Mg, 27
13Al, 28

14Si,
31
15P,

32
16S,

40
20Ca,

56
26Fe,

64
29Cu,

89
39Y,

110
48 Cd, 15262 Sm, 20882 Pb, 23892 U.

In fig. 4 (left panel) we present our results for the ratio
of the nuclear cross-sections normalized to 12C as a func-
tion of the mass number A. The curves correspond to the
incident γ momenta in the laboratory frame pγ = 2 (solid
line), 2.5 (dashed line) and 3GeV (dot-dashed line). Re-
call that, contrary to the p-induced production, in the
γ-induced reaction the elementary cross-section is defined
with respect to the protons in the Fermi sea only. Hence,
the nuclear cross-sections are normalized to the number
of protons Z in the corresponding nucleus, (σγA/Z).

As one can see, we obtain a significant reduction of
flux relative to 12C which can reach the value ' 0.4–0.5
for heavy nuclei. It is also instructive to renormalize ar-
tificially the model prediction for the Λ(1520) self-energy
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2.9GeV (solid line). Right panel: ratio of the nuclear cross-section normalized to 12C for Tp = 2.9GeV multiplying the Λ(1520)
width in the medium by different factors.

by some factors and look on the corresponding ratio of
the nuclear cross-sections. In fig. 4 (right panel) we show
our results for f · ImΣ entering the eikonal factor, where
the factor f is taken as f = 0, 0.5, 1 and 2. The calcu-
lations are performed for pγ = 2GeV. These results are
instructive because they tell us with which accuracy the
ratios must be measured experimentally to induce a cer-
tain value of the Λ(1520) in-medium width.

Next, we present the results for the p-induced produc-
tion. In fig. 5 (left panel) we show (σA/A) normalized to
the value for 12C as a function of the mass number and
for a projectile energy of Tp = 2.9GeV. The different lines
correspond to the consideration of the phase space (PS)
alone, eq. (8); phase space and initial-state interaction,
eq. (8), including the distortion factor of eq. (9) (ISI);
phase space and final-state interaction, eq. (8), including
the distortion factor of eq. (5) (FSI); and complete cal-

culation (total), i.e. the simultaneous consideration of all
the effects, eq. (11).

As we can see in the figure, the PS curve is quite stable
with respect to A, almost saturating from about A ∼ 50
on. This feature is common for both, p-induced and γ-
induced productions. This is just a consequence of the
density profiles of the different nuclei which makes that
the average density of each nuclei almost saturates with
A. By looking at the dot-dashed line, the effect of the
distortion of the incident proton in its way through the
nucleus is significative. This is the most important differ-
ence of the production induced by protons with respect
to the photoproduction case. The dashed line represents
the effect of only considering the FSI of the Λ(1520), but
not the ISI. The difference of this curve to the PS curve is
only due to the modification of the Λ(1520) in the medium.
The solid line represents the calculation obtained includ-
ing all the effects considered. Now if we look at ISI and
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FSI curves, we see that in both cases there is a sizeable de-
crease of the observable, particularly for ISI, which shows
a stronger A-dependence. Although the ISI and “total”
curves are almost parallel, the absolute values decrease
with A and therefore the contribution of the FSI becomes
more and more important. This significant A-dependence
can be seen in the ratio of these two curves which is shown
in fig. 5 (right panel). This is also in agreement with what
we find for photoproduction, where there is no initial-state
distortion. From this figure we can conclude that in the
A-dependence there is indeed valuable information con-
cerning the Λ(1520) absorption and hence, the Λ(1520)
width in the medium, which is the main conclusion of the
present work.

The total result including all the many-body effects
discussed above, but for other projectile energies with
Tp = 2.7 and 2.5GeV, is shown in fig. 6 (left panel).
Also in fig. 6 (right panel) we show the total results for
Tp = 2.9GeV but multiplying artificially the Λ(1520) self-
energy by different factors in order to check the sensitivity
of the observable to the value of the width. This curves
could serve to get a fair answer about the Λ(1520) width
in the medium by comparing with experimental results.

6 Summary

In summary, we have discussed the mass dependence of
the γ- and p-induced production of the Λ(1520) hyper-
ons from nuclei. The main motivation for this study is
a prediction of the spectacular increase of the width of
the Λ(1520) in the nuclear medium which can reach the
factor ∼ 5 at normal nuclear-matter density. Indications
that this might be the case can be seen in the analysis of
Λ(1520) production in heavy-ion reactions [28,29].

We have shown that both reactions, the γ- and p-
induced Λ(1520) production can provide an interesting
tool to investigate the properties of the Λ(1520) hyperon
and particularly the modification of its width in the nu-
clear medium. The calculations presented here predict a
considerable reduction of flux of the Λ(1520) in heavy nu-
clei with respect to light ones. We have also shown that the
opening of the in-medium absorption channels and associ-
ated increase of the width of the Λ(1520) with increasing
nuclear-matter density is a large source of such reduction
in the proton-induced production and practically the only
one in the case of photoproduction. These effects are sig-
nificant, and devoted experiments, easily within reach in
present facilities like Spring 8, ELSA and COSY, can pro-
vide good information on that magnitude, by measuring
the cross-sections studied here.

References

1. P. Carlos, H. Beil, R. Bergere, J. Fagot, A. Lepretre, A. de
Miniac, A. Veyssiere, Nucl. Phys. A 431, 573 (1984).

2. E. Oset, L.L. Salcedo, Nucl. Phys. A 468, 631 (1987).
3. R.C. Carrasco, E. Oset, Nucl. Phys. A 536, 445 (1992).
4. F. Klingl, T. Waas, W. Weise, Phys. Lett. B 431, 254

(1998) [arXiv:hep-ph/9709210].
5. E. Oset, A. Ramos, Nucl. Phys. A 679, 616 (2001)

[arXiv:nucl-th/0005046].
6. D. Cabrera, M.J. Vicente Vacas, Phys. Rev. C 67, 045203

(2003) [arXiv:nucl-th/0205075].
7. E. Oset, M.J. Vicente Vacas, H. Toki, A. Ramos, Phys.

Lett. B 508, 237 (2001) [arXiv:nucl-th/0011019].
8. P. Muhlich, T. Falter, C. Greiner, J. Lehr, M. Post,

U. Mosel, Phys. Rev. C 67, 024605 (2003) [arXiv:nucl-
th/0210079].

9. T. Ishikawa et al., Phys. Lett. B 608, 215 (2005).
10. D. Cabrera, L. Roca, E. Oset, H. Toki, M.J. Vicente Vacas,

Nucl. Phys. A 733, 130 (2004) [arXiv:nucl-th/0310054].
11. V.K. Magas, L. Roca, E. Oset, Phys. Rev. C 71, 065202

(2005) [arXiv:nucl-th/0403067].
12. M. Hartmann et al., Experiment 147.
13. S. Sarkar, E. Oset, M.J. Vicente Vacas, Phys. Rev. C 72,

015206 (2005) [arXiv:hep-ph/0503066].
14. E.E. Kolomeitsev, M.F.M. Lutz, Phys. Lett. B 585, 243

(2004).
15. L. Roca, S. Sarkar, V.K. Magas, E. Oset, Phys. Rev. C 73,

045208 (2006) [arXiv:hep-ph/0603222].
16. M. Kaskulov, E. Oset, Phys. Rev. C 73, 045213 (2006)

[arXiv:nucl-th/0509088].
17. Particle Data Group Collaboration (K. Hagiwara et al.),

Phys. Rev. D 66, 010001 (2002).
18. S. Sarkar, L. Roca, E. Oset, V.K. Magas, M.J.V. Vacas,

arXiv:nucl-th/0511062.
19. S. Sarkar, E. Oset, M.J. Vicente Vacas, Nucl. Phys. A 750,

294 (2005).
20. M.M. Kaskulov, E. Oset, M.J. Vicente Vacas, Phys. Rev.

C 73, 014004 (2006); [arXiv:nucl-th/0506031].
21. A. Ramos, E. Oset, Nucl. Phys. A 671, 481 (2000).
22. M.M. Kaskulov, E. Oset, arXiv:nucl-th/0512108.
23. L.L. Salcedo, E. Oset, M.J. Vicente-Vacas, C. Garcia-

Recio, Nucl. Phys. A 484, 557 (1988).
24. L. Roca, E. Oset, H. Toki, arXiv:hep-ph/0411155.
25. A. Sibirtsev, J. Haidenbauer, S. Krewald, U.G. Meissner,

A.W. Thomas, arXiv:hep-ph/0509145.
26. S.I. Nam, A. Hosaka, H.C. Kim, Phys. Rev. D 71, 114012

(2005) [arXiv:hep-ph/0503149].
27. A.I. Titov, B. Kampfer, S. Date, Y. Ohashi, Phys. Rev. C

72, 035206; 049901 (2005)(E) [arXiv:nucl-th/0506072].
28. J. Rafelski, J. Letessier, G. Torrieri, Phys. Rev. C

64, 054907 (2001); 65, 069902 (2002)(E) [arXiv:nucl-
th/0104042].

29. C. Markert, G. Torrieri, J. Rafelski, arXiv:hep-
ph/0206260.


